Go To:  http://www.101science.com  -  Your internet science directory and learning center.

Your free Mobile Friendly
Electronics resource.


Phase I:

Phase V:

Phase V:
  Advanced: Continued.

(1)Introduction  Amateur Radio

Phase Locked Loop

(2)Basic Electricity  

Antennas & Wavelength Power Supplies-Ckts  
  Books - Basic Electronics Radio Astronomy  

Phase II: Components:

Books - More Books Ref. I - Engineering  

(3)Basic Electronics  

Books - Top 10 Ref. II - Electronics  
(4)Resistors & Circuits   Calculations/Conversions Resonant Circuits
(5)Ohm's Law   Calculators for EE RF Design
(6)Capacitors and Circuits Circuit Design - SPICE RF Cafe
(7)Inductors Circuits and Science Robots  
  Data Sheets Schematics -Projects

Phase III: Workshop

DSP - Design - Tutorial Simulation  
(8)Math for Electronics Electronics Links Smith Charts  
(9)Shop Practices Engineer on a Disk **Electrical Engineering

(10)Test Equipment

FCC Software - Electronics  

(11)Soldering - How to

Ferrite Cores Software - Engineering
  Filters Standards & Formulas

Phase IV: Active Ckts.

Fourier Transform Substituting-Transistors
(12)Transistors/LED's Formulas - EE Technical Links
(13)Integrated Circuits HF Transformer Design Television  
(14)Digital Electronics Lasers Toroids I
(15)TTL Logic MathCAD-Electronics Toroids II - Calculating  
(16)Eddy Currents NEWS-Industry   Transistors/LED's
  PCB Design   Tutorials - Free Online


You are at the best, free online "Basic Electronics Course". Just read the brief blocks of text, view the videos, and check out some of the screened internet links. This is the easiest, fastest way to learn basic electronics. No sign-up requirements and it is free. The menu table above provides easy access to many interesting electronics topics. Take your time and enjoy.

Everyone today is exposed to electronic devices in one way or another.  The computer revolution is a good example.  Everyone can benefit from additional knowledge of electronics.  Even a quick scanning of this page will help.  A study of electronics starts with electricity, magnetism and basic electronics.  This includes Ohm's law and other basic principles of electricity.  Obtain and study various books on electronics - this is really a must as each author will explain things in a little different way to help you grasp the concepts.  

All the internet links to other web sites found on 101science.com were screened to provide you with the BEST the internet has to offer on each subject.  This will save you many hours of searching for good educational material.  This site is for everyone from the beginner to expert electrical engineering professional.  There is something here for every level of expertise in the world of electronics.  If you just need information on one specific area, use the table above to navigate to the information you need.  If you need more instruction - read on.

Maybe you already know some basic electronics and want to test yourself to see exactly how much you do know.


ELECTRICITY AND MAGNETISM BASICS - It all starts with the electrons moving around atoms. Electricity is the movement of electrical charge from one place to another.  Electric charges do not exist without their associated electric and magnetic fields. This module will introduce you to many of the basic concepts involved with electricity and magnetism.  

MATTER - Matter is physically everything that exists that we can touch and feel.  Matter consists of atoms. Now we will introduce you to the structure of atoms, talk about electrons and static charge, moving charges, voltage, resistance, and current. You  will learn about the properties of magnets and how magnets are used to produce electric current and vice versa. All matter can be classified as being either a pure substance or a mixture.  Matter can exist as either a solid, liquid, or a gas and can change among these three states of matter.  In electronics the most important matter are conductive metals, non-conductive insulators, and

ELECTRICAL CHARGE - Any object or particle is or can become electrically charged.  Nobody completely understands what this charge consists of but we do know a lot about how it reacts and behaves.  The smallest known charge of electricity is the charge associated with an electron.  This charge has been called a "negative" charge.  An atoms nucleus has a positive charge.  These two un-like charges attract one another.  Like charges oppose one another.  If you had 6,250,000,000,000,000,000 electrons in a box you would have what has been named; one coulomb of charge.  An easier way of thinking about a large number like that is called "powers of ten" and it would look like this 6.25 x 10^18 electrons.  It is simply a way to let you know to move the decimal point to the right 18 places.  When electrical charges are at rest, meaning they are not moving, we call that static electricity.  If charges are in motion we then have a flow of charge called electrical current.  We have given the force that causes this current a name called electromotive force and it is measured by a unit called a volt (V).  The unit of measurement of the current (I) or movement of the charge is called an ampere.  The resistance, or opposition, to current flow is called an ohm (R).

Explation of AC and DC currents. Watch the video.

ELECTRICAL FIELDS- Around a charge is an electric field.  With every electric field there is a magnetic field.  While we can't see these fields, or yet know exactly what they consist of, we can measure them with instruments and tell a great deal about their behavior.  We can then use this knowledge to our benefit.  The design and construction of electric motors, computers, radios, televisions, stereos, and many other electrical and electronic devices depend upon a knowledge of these basic principles of electricity.  As you can see we have given names to these phenomenon to make it easier for us to study and use.  We could have called them Dick, Jane and Mary but instead we named them for the scientists that discovered or first studied them; Volt, Ampere, and Ohm.  Mr. Volt, Mr. Ampere, and Mr. Ohm spent many years of their lives studying electricity.  They were not alone however as many other scientist were studying and learning more about electricity as well.

WATTS - POWER - What is a watt?  A watt is the International System unit of power equal to one joule per second.  The symbol used for a watt is "P" for power.  Power in watts is found by multiplying a circuits current (I) times its voltage (V).   You will learn more about power in watts in the ohms law section below.  

P - I*V 

Watch the video.

If you don't have a clue as to what electrical current and voltage are - read on.  We will cover that shortly.

Moving electric charges are the heart of basic electronics.  Knowing what moving charges are and how various electronic components affect the moving charges is the foundation of basic electronics.  View the videos and continue on down the page.  These are the basic building blocks of understanding "Basic Electronics".


- . -



Now that you have a general background in electricity and moving charges you can move on to learning more about basic electronics.  Electronics puts a knowledge of electricity to useful work.  Electronics applies electrical current flow of electrical charges to circuits to accomplish specific tasks.  Amplifiers can be constructed from glass "tubes" containing metal elements, or more commonly today with solid state diodes, transistors, or integrated circuits.   An amplifier is simply a device or circuit that takes a small signal input and controls a larger current as it output.  The input signal voltage is small and the output voltage is larger - amplified.  A circuit containing wire conductors, resistors, capacitors, inductors and amplifiers can be configured in many ways to build various electronic circuits like oscillators, digital logic circuits, computer circuits, television and video circuits and much more.  An oscillator by the way is just an amplifier with some of the output fed back into the input.  Sounds like a perpetual motion machine but it isn't as the amplifiers power supply is providing the additional energy that is lost in the circuit and keeps the circulation, i.e. oscillations going.

Basic electronics is all about electrical components and the circuits consisting of those components .  Common components are resistors, capacitors, inductors, transistors, and integrated circuits.  You will find each of these components described in detail in the following numbered sections.  The components are interconnect with conductors, either physical wires or printed circuits.  The components make up linear analog amplifiers, oscillators, and filters as examples.  They also can be configured to create digital logic circuits such as memories, gates, arithmetic units, and central processing units.  So you will find basic electronics in every computer, mp3 player, radio, TV and may other appliances in your home, car, or on your body.  Each circuit has a job. Components are interconnected to perform a specific task.  First learn about each individual component and how it works then learn about how to interconnect them to make useful end products. Continue your study by reading the numbered sections to follow.

Get the Malvino books below if you need an easy to read but excellent book to learn electronics as a technician.

 Electronic Principles

Malvino Electronic Principles

Instructor's Manual for Malvino...  

Experiments for Electronic Principles... 

Get the "Art of Electronics" books below if you want a more thorough and detailed way to learn electronics and for moving on to engineering.

There is another method of learning basic electronics.
It is hands-on by doing simple projects.
You will need some electronic parts avaialbe from a good junk box.



RESISTORS AND RESISTOR CIRCUITS - Resistance is the opposition to current flow in various degrees.  The practical unit of resistance is called the ohm.  A resistor on one ohm is physically very large but provides only a small resistance to current flow. A resistor of one million ohm's is physically small but presents a high resistance to current flow. A resistance that develops 0.24 calorie of heat when one ampere of current flows through it for one second has one ohm of resistance.  The unit of resistance is often represented by the Greek letter omega.  Resistors are often made of thin layers of carbon or lengths of small copper wire.  They can also be thin deposited layers of metallic material.  An image of a few resistor types is shown below.

What is electrical current? Electrical current, represented by the letter "I" in formulas, and it is the flow or rate of electric charge. This flowing electric charge is typically carried by moving electrons in a metallic conductor or electronic components such as resistors or transistors as an example. The unit of electrical current is the ampere, named after a french mathematician, Andre Marie Ampere. What is electrical voltage?  Electrical voltage is represented by the letter "V" in formulas and it is the electrical pressure a moving charge is under.  In the case of a static charge, one that is not moving, then voltage is the potential difference or pressure of the charge.  The relationship between current (I), resistance (R), and voltage (V) is represented by the formulas developed in Ohm's law.  We will study that in section 5 below.


Resistors can be connected in series (end to end), or in parallel (across one another), or in a combination of series and parallel.   If you connect two, 1/4 watt, 100 ohm resistors across one another (i.e. in parallel) then the total resistance in ohms is one half of one of the resistors.  In this example the resistance would be 50 ohms.  The wattage doubles as the current is now split between the two resistors.  The combination can now handle up to one half a watt safely.  If the two resistors were connected end-to-end (i.e. in series) the resistances add and in this case would be 200 ohms.  The wattage in this series case stays the same, 1/4 watt.  This information is handy to know as it is easy to calculate in your head and will allow you to devise additional resister values from a limited resistor bench stock.

RESISTORS IN SERIES: Connecting resistors in a string one pigtail to another is called connecting them in series.  When connected this way the resistance of one resistor adds to the next in line.  For example a 100 ohm resistor in series with a 500 ohm resistor is the same as having a 600 ohm resistor.  The wattage capability stays the same, in other words if the resistors are all 1/4 watt the string is 1/4 watt.  

Resistance in series resistance simply adds:   R = R1 + R2. This can be extended for more resistors: R = R1 + R2 + R3 + R4 + ...  

RESISTORS IN PARALLEL:  When resistors are connected in parallel (parallel; meaning they are tied across one another) their combined resistance is less than any of the individual resistances. There is a special equation for the combined resistance of two resistors R1 and R2:

Combined resistance of
two resistors in parallel:  

R =

 R1 × R2

 R1 + R2

For more than two resistors connected in parallel a more difficult equation must be used. This adds up the reciprocal ("one over") of each resistance to give the reciprocal of the combined resistance, R:








+ ...





The simpler equation for two resistors in parallel is much easier to use!

Note that the combined resistance in parallel will always be less than any of the individual resistances.

Resistor values are measured in ohms.  A thousand ohms is written as 1k to eliminate all the zeros.  The k represents three zeros.  A million ohms is represented by 1M.  Therefore; 1000 ohms = 1k ohm and 1000k ohms = 1M ohm.  Since resistors are so small their value is marked by a color code.  

RESISTOR COLOR CODES Resistors use color coded stripes to indicate their value in ohms. 0=Black, 1=Brown, 2=Red, 3=Orange, 4=Yellow, 5=Green, 6=Blue, 7=Purple, 8=Gray, 9=White.    





















Video showing resistor color codes.


Ohm's Law is extremely important in learning basic electronics.

What is Ohm's Law?  Ohm's Law is a formula that describes the relationship between resistance, current and voltage in an electrical circuit.  The formula is R (resistance in ohms) = (equals) V (voltage in volts) divided by I (current in amperes). 

That is:  R = V I

...and algebraic rules tells us that I - V R and V = I*R.

    I = V R, V = I*R, R = V I, and P (power in watts) = I*V are the fundamental formulas of Ohm's law.  (The * means to multiply the two quantities together).  Where V is the circuit voltage in volts, I is the circuits amperage in amps, and R is the resistance in ohms.    

Almost every electrical and electronic circuit involves resistance, current and voltage.  This is why it is vital you understand the relationships between them. 

As an experiment you can set up a circuit by connecting  resistors in series with a battery, measure the voltage across the resistors with a voltmeter, measure the current in the circuit by placing an ammeter in series with the resistors and the battery.  If you know the voltages and current in the circuit you can use Ohms law to calculate the resistance.  With the resistor out of the circuit you can measure it's resistance directly with an ohm meter.  The multi-meters today can measure ohms, volts and amperes (usually measured in miliamperes in practical circuits)  all in one piece of test equipment.

Below is a graphic chart showing the various relationships between resistance, current, voltage, and power and shows how one unknown can be calculated if you know the other two.

Ohms Law Video

A video on resistors and resistance.


Unequal Resistive Power Divider Calculator - Online




A capacitor  is a device that stores an electrical charge when a potential difference (voltage) exists between two conductors which are usually two plates separated by a dielectric material (an insulating material like air, paper, or special chemicals between two sheets of aluminum foil).  Capacitors block DC voltages and pass AC voltages.  They are used as filters, AC coupling capacitors and as by-pass capacitors.  They are also used in conjunction with resistors and inductors to form tuned circuits and timing circuits.  A capacitors value C (in Farads) is dependent upon the ratio of the charge Q (in Coulombs) divided by the V (in volts).   Common capacitors come in values of microfarads or Pico farads.  Often you will have to convert between Pico farads and micro farads.  A chart is provided below to assist in the conversion.  For a list of capacitor terms defined: Click HERE.   Measuring capacitance requires a capacitance meter.  This is separate piece of test equipment.  There are attachments for multimeters that allow measurement of capacitance directly. Also read this tutorial on how to test capacitors.

CAPACITOR Value Conversions:

Some capacitors may be marked in micro farads and others of the same capacitance value marked in Pico farads.  One Pico farad equals one micro-micro farad.  You may need to make conversions between the two equivalents.


Power of  10














Capacitor value conversion chart.

1 micro F = 1000000 uuf
1 uuf = 1 pf
.01 uf = 10000 pf
.005 uf = 5000 pf
.009 uf = 9000 pf
.0001 uf = 100 pf
.0005 uf = 500 pf
.0009 uf = 900 pf

A capacitor marked 104M is a .001 uf +- 20%

A capacitor marked 103M is a .01 uf +- 20%

A capacitor marked 102M is a .1 uf +- 20%


Capacitance and capacitors - watch the video.

Take a break and please support 101science.com with your purchase of Amazon.com items below.
 While this web site provides a quick background in basic electronics totally free
 you need additional supporting books to reinforce and obtain in-depth details.
Reading, and studying and having books for reference is your main path
 to a solid foundation in basic electronics and electrical engineering. 
Your support is appreciated. Thank yo



Now continue below with your free "basic electronics" learning process.
Yes, it is that easy!




Inductors  are usually made with coils of wire.  The wire coils are wound around iron cores, ferrite cores, or other materials except in the case of an air core inductor where there is no core other than air.   The inductor stores electrical charge in magnetic fields.  When the magnetic field collapses it induces an electrical charge back into the wire.  Inductors are associated with circuit capacitance and can form a tuned circuit and resonate at a particular frequency.   Two coils close to one another, as they are in a transformer, literally transfer charge from one coil to the other.  This is called mutual inductance. 

Inductor Calculators:

Inductor Calculator
Shavano Music Online - Cross-Over Network; Air Core Inductor
Jim Hawkins' Java Radio Calculators
Inductor Calculator
RF Cafe - Inductor Calculator Spreadsheet
DC Choke Design Calculator
The educational encyclopedia, datasheets
Circuit Sage: Inductor Tools and Links
The Engineers' Club Online Service - Engineering Calculators


FERRITE CORE TOROIDS - a special type of inductor  

Today you must learn about powdered iron cores and ferrite materials for winding your own toroidal coils.  Click here for basic background information on powdered iron and ferrite materials.  You will need to know the formulas for calculating toroidal core inductors; click HERE for FORMULAS. The cores will be made from different materials.  You will also need information on powdered iron material.  Now you have all the information you need to wind toroidal coils for your electronics projects. For core material table: https://www.amidoncorp.com/pages/specifications 

  To calculate the approximate inductance of a toroid, use the JAVA calculator found here:  http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/indtor.html#c1 Courtesy of Carl R. (Rod) Nave, Georgia State University.  Be sure to visit their main site loaded with JAVA calculators and other science information at: HyperPhysics http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html  including an offer of a  CD containing of all their fine materials.

Toroid Approximate Inductance CALCULATOR - Toroid CALCULATOR

Torroid Inductance charts: http://www.electronics-tutorials.com/basics/toroidcharts_mcq.htm


Testing Unknown Ferrite Cores

Ferrites are roughly divided into two groups. Those with permeabilities up to 850 are usually made from nickel-zinc material and have high volume resistivity ranging from 1x105 to 1x108. Higher permeability ferrites are usually made from manganese-zinc material and have volume resistivity ranging from 0.1x102 to 1x102. Iron powder cores are usually color coded and have very high volume resistivity. An initial test of the material can be made by checking the dc resistance between opposite faces/sides of a core. Low readings indicate a high permeability material. If you can measure inductance at a low frequency (10-100kHz), wind 10 turns of wire on the core and measure the inductance. You can then work back from the ferrite material formula and calculate the AL value, which can be compared with the tables of known cores of the same physical dimensions and so come up with a reasonable match. If 10 turns does not give a measurable reading try 20 or 30 turns.  

RF power rating can be roughly checked by using two exactly similar cores each wound with the same primary and secondary turns (say 10 turns each on primary and secondary) and then connecting the cores back to back as shown. This arrangement provides a 1:1 equivalent so that the transmitter sees the correct load. Losses are doubled by using two transformers, but this does not matter for the test. Set the transmitter to the desired frequency and reduce the rf power output to a minimum. Increase the power output in small steps (say 5 -10W per step) holding each setting for 30 seconds then checking the temperature of each transformer. The transformers should only get warm to touch but NEVER hot. When the final temperature of each transformer has reached about 40 deg.C you can say that you have reached the power limit for that particular core. Some cores will get hot at very low power. You have to make a value judgment about the core physical size versus the power rating achieved.

Ferrite (software program) is used to calculate the number of turns required on toroidal ferrite cores to achieve the desired millihenry-value inductance. 15 different ferrite toroids are included in this application. This program will calculate the winding data for an inductance range of 0.001 to 27 millihenries.
Style: CONSOLE , File size: 64K , zipped 31K.
Bug Fixes: Thanks to PA3CKR for the bug report ; fixed Jan 19/99.
Current Version is 1/19/99
Download the ferrite.zip file

A video on inductors.

Inductors - how they work.

Connecting Inductors

Summary of magnetisim.

RESONANT CIRCUITS - a combination of capacitance, inductance and resistance.

Tuned circuits are found within electronic circuits where, for example, only one certain frequency is of interest.  The filtering action of a tuned circuit is often associated with amplifiers as is found in a radios intermediate frequency stage.  Only one frequency is amplified due to the filtering action of the tuned circuit.  Tuned circuits may be designed for a very a narrow band of frequencies or with a wide bandwidth.  Tuned circuits are also found in oscillators.  Here the tuned circuit allows oscillations only at the tuned circuits resonant frequency in a properly designed circuit. Resonant circuits are a combination of inductance, capacitance and resistance. Please look at some of the links below for more detailed study of resonant circuits..

f = {1 \over {2 \pi \sqrt{LC}}}

Links to other interesting web site about toroids and other inductors.

Useful hints concerning winding toroid coils.
Building a toroid http://www.hamradio-online.com/1999/apr/w6bky-10.html
Toroid Inductance Charts http://www.electronics-tutorials.com/basics/toroidcharts_mcq.htm
A GREAT Inductor Impedance CALCULATOR online - http://www.cvs1.uklinux.net/cgi-bin/calculators/ind_imp.cgi


RF Simulation Freeware - RFSim99


Links to other interesting web sites about resonant circuits.

Resonant Circuits Link
Resonant Circuit Formulas
More Resonant Circuit Information resonance
Resonant circuits
RLC Circuits - Introduction
What is the formula for resonance in a series and parallel circuit ...
Get more discussion results
Rlc Circuit Formula | Best Of Web | TutorVista
Lessons In Electric Circuits -- Volume II (AC) - Chapter 6

[PDF] Sophomore Physics Laboratory Analog Electronics: Resonant Circuits
[PDF] ELEC290: Linear Circuits (Electronics II)
Electronics 38
CASPOC - Power Electronics Simulation Software
Resonance in series-parallel circuits - Chapter 6: RESONANCE 
Electronics Technician - Program Outline
Electronics - T
Interactive Power Electronics Seminar (iPES)
Also see, ALL ABOUT CIRCUITS: http://www.allaboutcircuits.com/vol_2/chpt_9/1.html
Electrical Circuit Theorems - EngPlanet.com: Library of Electrical Circuit Theorems  http://www.engplanet.com/redirect.html?1900
Parallel Resonant Circuits

Resonant Circuits I

Resonant Circuits II
[PDF] Resonant Circuits by Time and Frequency
[PDF] Sophomore Physics Laboratory Analog Electronics: Resonant Circuits
Resonant Circuits in a Magnetron Tube
A Composite Capacitor/Inductor Assembly for Resonant Circuits 
GREAT Tuned Circuit Impedance CALCULATOR online - http://www.cvs1.uklinux.net/cgi-bin/calculators/tuned_circuit.cgi

Software concerning Inductors

CaMF1.zip 51k LP or HP filter and matching circuit calculation. See notes on CaMF
CaLC3.zip 46k General impedance calculations, LC circuits calculations. Textfile describes, how to use it.
CaNI1.zip 41k RX front-end IMD and noise figure calculations
CaIT1.zip 48k Toroidal coil calculations
CaIW1.zip 45k Wire coil calculations
CaQI1.zip 39k Inductance and Q measurement helper program
Ca2LQ1.zip 42k Inductance and Q measurement for coils with parasitic capacitance
CaXtal1.zip 44k Quarz crystal calculator. It calculates equivalent circuit values from a measurement in a 50 ohm line
CaRA1.zip 44k Resistive attenuator calculations
Xline1.zip 49k Microstrip stub design, general tapered stub with reactive termination
Tline2.zip 54k Impedance transform in a transmission line with microstrip calculations


8. Math for Electronics

Do you need math skills to understand electronics?  Yes!  All science subjects including electronics (a division of physics) require various levels of understanding mathematics.  If you are interested in electronics only as a hobby then general math may be all you will need, to get by.  If you are serious about becoming an electronic technician then you will need at least a basic understanding of algebra and and be able to use and make graphs.  Electrical engineers need advanced mathematics training through calculus. 

Why, you may ask?  Basic electronics involves the use of equations.  For example, Ohms law requires a basic knowledge of algebra to fully understand it and to be able to use it effectively.  Electronic technicians will use Ohms law and other algebraic formulas frequently in typical day's work.  Some knowledge of trigonometry would be helpful.  Electrical engineers need to know how to calculate various rates of change in electrical parameters in a quick and relatively simple manner.  Without the appropriate skills at your level of interest you will be greatly handicapped in your work.  There are substitutes for many situations such as pre-printed charts, databases, cookbook circuits, and internet resources.  But they may not quite serve your current purpose and will take time to research and find.  It is best to obtain basic math skills to a level required by your specific work.

  • Learn algebra here.
  • Learn about graphs here.
  • Learn about graphs of a line here.
    Learn about graphing a function here.
  • Learn more about domain and range here.
  • Learn about geometry HERE.
  • Learn about statistics for electronics HERE
  • Learn about trigonometry here.
  • Learn calculus here.  (Don't miss this - click)
  • Learn about using MathCad for electronics problems.
  • See our mathematics section for more math links.

Scared of calculus? Scared of calculus symbols?  No need to be as they are not meant to scare you.  They are really very simple once you know how to think about them and know what they represent.  For example, often you will see the symbol d or perhaps dx in a formula.  Well, d simply means a small amount of something. So, dx simply means a small amount of whatever x represents.  Don't try to multiply the two (d and x), they are not meant for that, just think of dx as a small amount of x, period.   The symbol dx is called a differential.  Also, you might have seen this symbol, called an integral.   Now that is scary, right?  No, not any more because now you know it is simply a tall skinny S.  Now how can a tall skinny S scare anyone?  If you think of as meaning "the sum of" (the word sum starts with an S) well,  that isn't scary either.  You know that 4 is the sum of 2 + 2 already.  Let's say you wanted to add up all the little bits of x and determine the sum of all the dx's you haveNow putting these two symbols together,dx simply represents "the sum of"all the "little bits of x" that you have.  This process is often called integration, which is simply the assembling together of a lot of little things.  Integral calculus involves adding up little bits of things.  A better definition might be, "the part of calculus that deals with integration and its application in the solution of differential equations and in determining areas or volumes etc."  For more information and explanation of the definitions of integral and differential calculus see this page - HERE - and more HERE.

So how does calculus help us in electronics?  The whole purpose of calculus is to make very difficult calculations easier.  Yes, sometimes down right easy or usually at least somewhat easier.  Most people think calculus is designed to make simple calculations difficult to impossible.  But that is only because they really don't speak or understand calculus.  It is sort of a foreign language.  Learn to understand the language like we did above and calculus gets a lot easier.  One example is calculating a transformer rate of change in output voltage at any one given instant.  A much easier problem to solve if you use calculus.  Who dreamed this calculus stuff up any way?  If you want to read about the history of calculus go HERE.  If you want another clear explanation of calculus read this - HERE.

Algebra &
Linear Alg.
 & Matrices
Trig. &
Logs &
Differential Calculus Integral Calculus Differential Equations
go to topic go to topic go to topic go to topic go to topic go to topic go to topic


Definitions of electrical engineering on the Web:

See some examples of differential calculus and how it it used in electronics HERE.

Understanding CapacitanceInductance Formulas - Science Forums and Debate

A function is something whereby you can put in some variable and get a different, dependant variable out. So, if f(x)=2x-3, you can put in some value, say 6, and get f(6)=2(6)-3=9.

Differentiation of a function is the generation of another function for which the "y-value" (value of the dependant variable at a given "x-value," or independant variable) of the second is equal to the gradient, or slope, of the first.

For example, take the function y=f(x)=x^2. For any given x, there is a y that is equal to x^2. The derivative of this function happens to be f1(x)=2x, meaning that for a given point on the original curve, its slope can be represented by 2x. So, at x=4, f(x)=4^2=16, and its slope at that point, f1(x)=2(4)=8, or 8 units up for every 1 unit over.

The dy/dx means instantaneous change in y divided by instantaneous change in x. An explanation: Slope is measured by change in y divided by change in x. So between two points on a curve, the y-value of the second minus the y -value of the first, all divided by the x-value of the second divided by the x-value of the first, will give you the slope of the straight line between those two points, also called the secant. But we want the slope at a point, which poses some problems. How can there be any change at one point? Well, there can't, really, but what we can do is find the change between two points which are closer to one another than any finite distance. We can determine through algebra that as you make the distance between them smaller and smaller, the change in y over change in x gets closer and closer to some definite ratio, which is the "limit" as the distance between them "approaches zero." Thus, the "dy/dx" is that ratio at an infinitely small distance, thereby effectively being the slope at one point
.Understanding CapacitanceInductance Formulas - Science Forums and Debate

If it's an upper case sigma then that means the sum of a sequence.

It's got everything to do with integrals. An integral is the sum of the rectangles under the curve, change in x (width) times height, the change in width approaches zero and the number of rectangles approaches infinity. Sums are where integrals come from. It's basically "the sum of all y-values."
Understanding CapacitanceInductance Formulas - Science Forums and Debate

For AC electronics, designing circuits is easily done, using complex numbers.

Imagine a voltage source with a angular frequency ω and amplitude A, so as function of time you have V(t) = A*cos(ωt).

Now, replace this with a voltage X(t) = A*exp(ωt). Now, the real voltage can be written as the real part of X(t), being Re(X(t)) = A*cos(ωt).

Using this formalism, you can treat every passive linear component as a complex resistor Z. For lumped devices there are basically three types:

Capacitor with capacity C: Z = 1/jωC
Resistor with resistance R: Z = R
Inductor with inductance L: Z = jωL

Here the number j has the property j = -1.

Now I'll give an example with three nodes, GND, VIN, VOUT. Between GND and VIN there is a voltage source X(t). Between VIN and VOUT there is a resistor R. Between VOUT and GND is a capacitor C. What is the output voltage as function of input voltage?

This now can be easily solved. We introduce a complex voltage XOUT and XIN.

We have a series connection of two resistors. Using basic circuitry for resistors you find

XOUT = XIN * (ZC / (ZC + ZR)), where ZC is the capacitor's complex resistance and ZR is the resistor's complex resistance.

Now XOUT = XIN *(1/jωC) / (R + (1/jωC)) = XIN / (1 + jωRC)

So, you have XOUT as function of XIN and the angular frequency ω.

The amplification as function of frequency ω can be written as 1/sqrt(1+ωRC). There also is a phase shift, between input and output. That is -arg(1 + jωRC). For small ω (close to DC), the phase shift is close to 0, for high ω, the phase shift is almost 90 degrees.

If you understand complex numbers, then this should be easy to grasp, otherwise it indeed will be very difficult for you to determine transfer functions of capacitive and inductive circuits.


For Electrical Engineering - QuicKTime Movie - Review of Pre-Calculus Math -


Great Calculus Tutorial to get you started  http://www,math.hcm.edu/calculus/tutorials/substitution

Free eBook - Calculus Based Physics I

Copyright 2005-2008, Jeffrey W. Schnick, Creative Commons Attribution Share-Alike License 3.0. You can copy, modify, and rerelease this work under the same license provided you give attribution to the author. See http://creativecommons.org/


Free eBook - Calculus Based Physics II


Rules for limits
Derivative of a constant
Common derivatives
Derivatives of power functions of e
Trigonometric derivatives
Rules for derivatives
The antiderivative (Indefinite integral)
Common antiderivatives
Antiderivatives of power functions of e
Rules for antiderivatives
Definite integrals and the fundamental theorem of calculus
Differential equations
Calculus Reference
Calculus Resources - Comprehensive!!
Calculus Tutorial
Calculus Explained with Pictures
Calculus Aids - Reference - Solutions - Formulas
Calculus Without Tears
GREAT CALCULUS Java Applets for Learning

MATHCAD for Electronics

Download Mathematics & Simulation / Mathcad from Adept Scientific ...
Ashley - Analog Electronics with LabVIEW
EE 3050 - Analog Electronics
EDN - MathCAD functions perform log interpolation
[PDF] Chart Analysis Enhanced with Mathcad

Mathcad files for electronics http://www.mathcad.com/resources/search/search_results.asp?t=electronics&tp=000000

Mathcad Circuits http://www.mathcad.com/library/LibraryContent/MathML/Ashley.htm

Mathcad Resources for Electronics - Circuit Sage

New Routine
A/D Design
Filter Design
Impedance Matching
Inductor Design
LNA/PA Design
PLL Design
Transceiver Design
Transmission Line Design


The following MathCad scripts accompany the book
"High-Speed Signal Propagation: Advanced Black Magic"

These scripts may be used to simulate long transmission structures using the frequency-domain method, which for linear systems is acknowledged as the "gold standard" against which other simulation technologies are measured. These scripts provide incredible control over every parameter of simulation. They may be re-programmed to suit almost any need. The scripts are provided in MathCad syntax, and also in the form of .pdf files in case you want to just see the equations so you can port them to another brand of mathematical spreadsheet.

Version 2001i MathCad / High-Speed Signal Propagation modeling scripts (.zip)
Version 8 MathCad / High-Speed Signal Propagation modeling scripts (.zip)
Version 6 MathCad / High-Speed Signal Propagation modeling scripts (.zip)
Version 2001i High-Speed Signal Propagation .PDF versions (.zip)


Calculus Resources - Comprehensive!!
Calculus Tutorial
Calculus Explained with Pictures
Calculus Aids - Reference - Solutions - Formulas
Calculus Without Tears
GREAT CALCULUS Java Applets for Learning

Links to other interesting web site about calculus.

Links to other interesting web site about math and electrical engineering

Smith Charts and Fourier Transforms
Electrical Engineering Helps

Understanding Capacitance and Inductance Formulas - Science Forums and Debate
Volume Functions A Maximization Problem
Calc 101 Automatic Calculus Solutions
AP Physics & Calculus Problems of the Week From Kentridge High School
Interactive Calculus - Teachers can write Ron Larson odx@psu.edu for a free subscription.
AP Calculus from the College Board
Physics and Calculus Problems of the Week
Finite Mathematics and Applied Calculus Resource Page
Alvirne HS Problem of the Week A gold mine of current and archived problems
Visual Calculus
Dave Slomer's Calcu Page
The Rental Car Problem from CCP
Mr. Calculus
The rise of calculus For the history buffs among us
AP Calculus on the Web from Sandy Ray
First Semester Calculus The Continuity-Differentiability Issue
The Calculus Hater's Homepage The other side heard from (poor fellow)
Karl's Calculus Tutor Lots of information
AP Distance-Learning Project
Dr. Papa's Course at Rice U. complete with exams
Integral Calc Exam from U of Pitt
Differentiation Problems from U of Pitt
Integration Problems Same Place
Learning Calculus A How-To-Be-Successful List of Tips
The MATHMAN Something about teaching Calculus to 7 year olds
Dr. Sloane's Calculus 1 and 2
I Love Calculus


A very easy way to learn the math you need is to view the various "Standard Deviants" videos.  Often difficult material is presented in a fun and interesting manner.  Give them a try. They are very inexpensive learning tools.

The Standard Deviants: Basic Math ~ DVD
The Standard Deviants: Basic Math ~ VHS
The Standard Deviants: Pre-Algebra, Part 1 ~ VHS
The Standard Deviants: Pre-Algebra, Part 2 ~ VHS 
Pre-Algebra Video Bundle ~ VHS 
The Standard Deviants: Algebra, Part 1 ~ VHS
The Standard Deviants: Algebra, Part 1 ~ DVD 
The Standard Deviants: Algebra, Part 2 ~ VHS
Standard Deviants: The Many-Sided World of Geometry ~ VHS
The Standard Deviants: Geometry, Part 1 ~ VHS 
The Standard Deviants: Geometry, Part 2 ~ VHS
The Standard Deviants: Trigonometry, Part 1 ~ VHS 
The Standard Deviants: Trigonometry, Part 2 ~ VHS
The Standard Deviants: Pre-Calculus, Part 1 ~ VHS 
The Standard Deviants: Pre-Calculus, Part 2 ~ VHS
The Standard Deviants: Calculus, Part 1 ~ VHS
The Standard Deviants: Calculus, Part 2 ~ VHS 
The Standard Deviants: Differential Equations ~ VHS 
The Standard Deviants: Statistics, Part 1 ~ VHS 
The Standard Deviants: Statistics, Part 2 ~ VHS 
The Standard Deviants: Statistics, Part 3 ~ VHS 


FORMULAS - EngPlanet.com Library - Electrical Circuit Formulae

Links to other interesting web site about "Phase Locked Loops"

Circuit Sage: Phase Locked Loop Tools and Links
RF Avenue - PLL Design, Tutorial, Circuits, & Tools -- Phase 
Phase-Locked Loop Circuit Design
Discover Circuits - Phased Locked Loop (PLL) Circuits
Find in a Library: Phase-locked loop circuit design | English Book 
[PDF] Application Note
Chipworks - Publications - Comparative Analysis of Phase Locked
The educational encyclopedia, Phase Locked Loop, PLL circuits, Pll
Phase-Locked Loop Circuit Design
RF Avenue - PLL Design, Tutorial, Circuits, & Tools -- Phase 
PDF] AN177 An overview of the phase-locked loop (PLL)
Interactive Digital Phase Locked Loop Design
Digital Phase Locked Loop (phy-pages/dpll.html)
[PDF] Phase-Locked Loops: A Control Centric Tutorial
[PDF] Application Note
Philips Semiconductors - Semiconductor Logic [Products - Phase 
Circuit Sage: Phase Locked Loop Tools and Links
Amazon.com: Books: Phase-Locked Loop Circuit Design
Phase Locked Loop


Please go to the separate TRANSISTOR  page Click >> HERE

Transistors and amplification introductory -  basic information. http://landau1.phys.virginia.edu/classes/241L/transist/transold.htm 

NEW!  Click HERE for the latest breaking Semiconductor Industry News.

Radio Calculators http://www.qsl.net/yo5ofh/data_sheets/amateur%20radio%20computer.htm

Semi-conductor DATA SHEETS http://www.qsl.net/yo5ofh/data_sheets/data_sheets_page.htm

Magnetron Tutorial http://www.gallawa.com/microtech/magnetron.html


Go to page 2 here.


Digital electronics is based on electronic switches.  A circuit is either on or off represented by the presence of a voltage or not or in some cases two different voltages.  A string of on or off conditions are made to represent numbers.  These are usually binary numbers but could be based on a variety of mathematical bases.  For example, "Hexadecimal" or a base of 16.  But the most common is binary.  Any number can be represented in a binary based system with a series of ones' and zero's (voltage on/off conditions).  Here is a short table of some binary numbers and their decimal equivalents.  The binary numbers place values  from right to left as shown in the table are; one, two, four, and eight.  So, binary 1111 is the same as adding 1+2+4+8 from right to left and that equals 15.  See the samples below then study the chart.  

1  1  1  1  =  15 binary         1  0  0  1  = 9 binary        1  0  1  1  = 11 binary

8+4+2+1 = 15 decimal        8+0+0+1 = 9 decimal      8+0+2+1 = 11 decimal





































For an online course on digital electronics and how binary mathematics is used in LOGIC blocks visit this web site: http://www.gamezero.com/team-0/articles/math_magic/micro/comb.html

Digital Projects:  http://www.eleinmec.com/category.asp?3

These basic concepts are the building blocks for more sophisticated configurations of digital electronic integrated circuits.  Today digital integrated circuits combine hundreds and thousands of switches per IC package.  It is not necessary to know exactly what the internal circuitry is but you must know the fundamentals to understand how to use the IC's together to build digital equipment.  Our computer industry today depends upon many people knowing and using these same basic fundamentals.

The free MultiMedia Logic software is available at http://www.softronix.com/logic.html

Download the "Setup Kit".

IMPORTANT: Be sure to check out all the links in the table below. Some very good information there.

(13)Integrated Circuits

(14)Digital Electronics

(15)TTL Logic

(16)Eddy Currents

Digital Electronics Online Problem - http://science-ebooks.com/electronics/digital_electronics.htmDigital Electronics & Superconductors http://www.ece.rochester.edu/~sde/cool/coollinks.html
Howstuffworks "How Electronic Gates Work"
Digital Electronics Corporation
Digital Electronics II
Digital Logic
TTL Logic 
More at http://www.electronics-lab.com/downloads/index.html

Digital Logic and Computer Systems College Course http://www.physics.mcmaster.ca/phy4d6/ 
McMaster University, Hamilton, Ontario, Canada.

Digital electronics Book recommendation: Digital Systems, 
by by Ronald J. Tocci (Author), Neal S. Widmer (Author)

Television Tutorials - Williamson Labs!


NTSC: Introduction


Scanning, Timing/Sync, Sync Recovery,  Numbers


Gain & Offset, D.C. Restoration, Gamma Correction


Resolution, Bandwidth, Spectrum


Color Physics: Eye, CIE


Color Encoding: Color Bars, Camera, 
RGB, YIQ, Color  Subcarrier


Color Decoding:


Digital TV/Graphics: ADC-DAC, Frame Buffers, Timebase Correction, VGA


VCR: Spectrum, Circuits


Circuits & Practices: D.C. Restore, Proc Amps, DAs

 EIA 1956 Video Resolution Chart for printing



Television means "seeing at a distance".  It may be described as a system for the conversion of light rays from still or moving scenes and pictures into electric signals for transmission or storage, and subsequent reconversion into visual images on a screen.  

Basically the image formed by the camera lens is focused on a light sensitive material that is scanned in horizontal lines with each line following closely beneath it.  The light intensity (and color) is converted into an electrical signal and transmitted over the air or through cables to a receiver.  The "TV" receiver converts the electrical signals back into scan lines traced on a cathode ray tube (CRT).  The fluorescent material on the face of the CRT is activated by the CRT's scanning electron beam to re-form the picture. 

Basic Video information HERE.   http://webs.soltec.net/movpic/Video.htm
NTSC signal information: http://www.seanet.com/Users/bradford/ntscvideo.html
Free television and video articles and guides HERE.  http://www.videouniversity.com/article2.htm 

Understanding & Measuring Video TV-RF Signals http://www.sencore.com/newsletter/Mar02/TVRFpartIII.htm

Click HERE to view a "large list" of links related to television and video.

Electronics Tutorials - Williamson Labs!


No matter what program you have to help you, everyone needs to understand why we produce graphs, and how to interpret them properly. Here's a basic guide, including paper to print out!

NEWS!  Click on titles below for the latest breaking news - updated every 15 minutes.

"AT&T Corporation"  NEWS.
"Computer Security" NEWS.
"Computer Services" NEWS.
"Consumer Electronics" NEWS.
"Digital Television" NEWS.
"Engineering" NEWS.
"Handhelds" NEWS.
"Hewlett Packard" NEWS.
"IP and Patents" NEWS
"Microsoft" NEWS
"PC Industry" NEWS
"PC Software" NEWS
"Personal Technology" NEWS

Antenna wavelength calculator
Enter operating frequency and then click the full wavelength (WL) or 1/2 or 1/4 wavelenth button. to see antenna length required.
= ft. (or inches.)

Free JavaScripts provided
by The JavaScript Source

Don't miss the Electronic Engineers!
 HOT-SHEET _ Everything you need!

NEW EngPlanet Electrical Engineering Technical Reference -  http://www.engplanet.com/redirect.html?3804

NEW EngPlanet AWG Wire Chart -  http://www.engplanet.com/redirect.html?3802

Electronic Circuit Design Page

Audio Spectrum Analyzer and Equalizer Designs http://www.ethanwiner.com/spectrum.html

Audio Filters--Theory and Practice  http://www.ethanwiner.com/filters.html

FREEWARE Software:  http://www.schematica.com/Fil_Xfer/Transfer.htm

 Unisoft VIEW-MARKUP module (Free Download)
Printed Circuit Board assembly viewer software VIEW comes free with the
Unisoft VIEW-MARKUP module. VIEW-MARKUP is a fantastic tool for anyone
involved in electronics.  Unisoft VIEW-MARKUP displays your PCB assembly on
a PC and finds components, nets, pin, part numbers, shorted traces, and more
instantly.  VIEW-MARKUP has a schematic mode and generates process
documentation, assembly instruction sheet, etc.  For more information and to
download the free software and Tutorial Movie go to
www.unisoft-cim.com/pcbview.htm  or phone 888-486-4246

PCB Design
Merlin PCB Designer - Shareware version 1.3 for CorelDRAW 7

HOW TO MAKE PRINTED CIRCUITS    Click>>HERE http://www.thinktink.com/stack/volumes/volvi/pcbproto.htm 

PCB Board Creation - Design Software!

Eagle PCB Design Software http://www.cadsoft.de/info.htm

Eagle Lite Freeware http://www.cadsoft.de/freeware.htm

Eagle Download http://www.cadsoft.de/cgi-bin/download.pl?page=/home/cadsoft/html_public/download.htm.en&dir=pub/program/4.1

Eagle Getting Started Tutorial   http://fab.media.mit.edu/topics/electronics/pcb/

An Eagle Board Exampleand an Eagle Schematic Example:


Links to other interesting Eagle web sites.


CadSoft Online: EAGLE Layout Editor - [ Translate this page ]
CadSoft Online: Home of the EAGLE Layout Editor
Spiace and Eagle PCB software
Eagle PCB Integration
Creating Eagle PCB Board
Eagle PCB layout
Eagle PCB -> LPKF Milling Machine Mini-How-To
[PDF] Eagle PCB Train at Home Course
EAGLE PCB Power Tools
Welcome to Eagle PCB editor pages
[PDF] Eagle PCB On-Site Training
[IndustryCommunity.com] eagle pcb software - what do you think of ...
diyAudio Forums Archive - Eagle PCB VS Express PCB
eagle pcb - [ Translate this page ]
Routing Signal Trace on Eagle PCB Layout

Other PCB Sources

ExpressPCB - Free PCB layout software - Low cost circuit boards 
Making Printed Circuit Boards
IPC - Association Connecting Electronics Industries
Printed Circuit Design & Manufacture Magazine Online
Advanced Circuits
Download free shareware around PCB : Printed circuit board - PCB 
Printed Circuit Boards and Assemblies - Tyco Electronics
PCBexpress prototype printed circuit board manufacturer

EEE Library Access - Free

EE Software Downloads

Hobby Circuits Very High Quality!
1 More Circuits
2 More Circuits
Larry's Robotics and Circuits

Electronics Plus - Basic electronics and projects for the hobbiest.

Electronics Learning on the Internet - very good site

New Database Listings - very complete for semiconductors

EXCELLENT!  EE Theorems and Formulas  http://www.bowest.com.au/library.html

Oscilloscope SOFTWARE  by Matthijs Hajer 
Download here:

Engineering/Electronics Calculator Software

Technical Data - http://home.san.rr.com/nessengr/techdata/techindex.html

Wire Information http://www.wiretron.com/

FILTERSCAD - Design Electronic Filters
FREE AADE Filter Design Program : http://www.aade.com/filter32/download.htm
And a free shareware downloads at

Filter Programs:

GTH Electronics: Free DOS Circuit Analysis and Waveform Analysis 
Almost All Digital Electronics
Electronic filter - Wikipedia, the free encyclopedia
Circuit Sage: Filter Design and Analysis
Driver Guide - free downloads - freeware and shareware MISC  
LC and crystal filter software
what's new on Ian Purdie's electronic tutorial and electronic 

AppCAD Ver 3.0    now available !

What is AppCAD?

AppCAD is an easy-to-use program that provides you with a unique suite of RF design tools and computerized Application Notes to make your wireless design job faster and easier. AppCAD's unique, interactive approach makes engineering calculations quick and easy for many RF, microwave, and wireless applications. AppCAD is useful for the design and analysis of many circuits, signals, and systems using products from discrete transistors and diodes to Silicon and GaAs integrated circuits. The keyword for AppCAD is easy - no circuit files, no manuals - just quick and easy.

See our: Amateur Radio Page

Amateur Radio and Audio Java Calculators   
Links From: John Owen -  www.vwlowen.demon.co.uk

Amateur Radio and other software http://www.vwlowen.demon.co.uk/radio/files.htm

Radio Calculators


CSG's Online Calculator - General Math
8051 Microcontroller Peripheral Timing Calculator
Acoustic Reverb Delay (RT60) Calculator
Active Audio Filter Calculator
Amateur Radio TVI Troubleshooter
Astable 555 Square Wave Calculator
Atmospheric Sound Absorption Calculator
Audio Pre-Amplifier Calculator

Battery Charge Time Calculator
Board Etch Run Impedance Calculator
Capacitor Information, Converters and Calculators
CCD Focal Length Calculator
CCD Object Resolution Calculator
CCD Object Size Calculator
Coil Frequency From Wire Length Calculator
Dielectric Constants Of Various Materials Table
DIVX Bitrate Calculator
Electrical Harmonics Calaculator
Electronics Hobby Project Information
Frequency Wavelength Calculator
General Device Frequency Information
Helical Primary Turns Calculator For Coils
Impedance And Resonant Capacitor Calculator For Coils
Inductance Calculator For Spiral Flat Coils
Jar Capacitance Calculator For Coils
LED (Multiple) Circuit Power And Series Resistor Calculator
LED (Single) Circuit Power And Series Resistor Calculator
Metric - English Energy Converter
Metric - English Power Converter
Monostable 555 Timeout Calculator
Ohm's Law Calculations
Ohm's Law Calculations With Power
Op-Amplifier Calculator
Parallel Resistance Calculator
Percentage Calculator
Resistance, Capacitance, Voltage, And Time Calculator
Resistor Color Code Table And Calculator
Speaker 70 Volt Powered Line Calculator
T-Pad / H-Pad Resistance Calculator
Telephone Alpha Representation To Number Conversion
Telephone Number To Alpha Representation Conversion
Transformer Values Calculator
Series Resistance Calculator
Speaker Combination Decibel Calculator
Speaker Decibel Change Calculator
Speaker Decibel Change From Voltage Change Calculator
Speaker Decibel Power Change Calculator
Speaker Sound Q Calculator
Voltage Divider Calculator
Transistor Simulator And Calculator
Voltage Drop Calculator
Wire Length From Coil Frequency Calculator
Zener Diode Calculator
Current Solutions, Inc - Your OEM Power Supply Resource Center

The Electronics Calculator Website
Electronics Converters and Calculators
History of Calculators
Electronics Calculators
Sharp calculators at sharpUSA.comElectronics Calculators
The Calculator Museum Web PageJumbo Electronics : Calculators - Printing from Casio
Calculator History: Wang Laboratories: From Custom Systems to
Online ElectronicCalculators


101science Calculator and conversion page

Transceiver Design Papers - GREAT!! 

CAD http://kabuki.eecs.berkeley.edu/slides.html#cad

Theses  http://kabuki.eecs.berkeley.edu/thesis.html

Power Supplies

Power Supplies, AC DC Power Supplies by Elpac
Lambda - manufacturers of AC/DC and DC/DC power supplies
Elgar Electronics Corporation
Darnell.Com Inc.
Rantec Power Systems Inc, power supplies, DC-DC converters, COTS
Spellman High Voltage
SMPS switching power supply design by Lazar's Power Electronics
MPJA - Power Supply, Power Supplies, Security Cameras, LCD, Fans
AC Power Source, AC-AC, Frequency Converter, AC-DC, DC-DC, COTS
Del Global Technologies Corporation Home Page

Power Supply Circuits

Simple 5V power supply
Power Supplies and Circuits
Simple 5V power supply
Electronic Circuits
Power Supply
Power supply circuits - Chapter 9: PRACTICAL ANALOG SEMICONDUCTOR
Sam's Laser FAQ - Diode Laser Power Supplies
Application Notes by Category - POWER-SUPPLY CIRCUITS
Power Supply Circuits

Special!!! RFSIM99 Download RFsim99.exe
RFsim99 linear simulator.
RFSim99 is a
free linear S-parameter based circuit simulator offering schematic capture, simulation, 1 port and 2 port S-parameter display and file support, tolerance analysis, stability circles, and much more. Requires Windows 95, 98, NT or 2000. File size 2045KB.

ELECTRONICS  - - You are looking at page one of 2 pages  to go to page 2 click here.
  6. Shop Practices/Test Equipment  7. Amateur Radio  8. Television/Video  9. Robots  10. Reference/EE  11. LINKS  12. Equipment for Sale  13. DSP (A Crash Course)

here free!

"Complete Site" Electronics Alphabetical Table of Contents.

Amateur Radio

Fourier Transform

RF Design

Antennas & Wavelength Calculator

Formulas - Electrical Engineering

RF Cafe

Basic Electricity - Electric Circuits (2)

HF Transformer Design


Basic Electronics (3)

Inductors (7)

Schematics and Projects

Books - Basic Electronics

Integrated Circuits (13)

Shop Practices (9)

Books - More Books

**Introduction to Electronics (1)**


Books - Top 10 Electronics


Smith Charts

Calculations and Conversions

Math for Electronics (8)

Society for Amateur Scientists

Calculators for Electronics

MathCAD for Electronics

Software - Electronics

Capacitors and capacitor circuits (6)


Software - Engineering

Calculus for Electronics

NEWS - Electronics Industry  

Soldering - How to Guides (11)

Circuit Design - Circuits - SPICE

Ohms Law  (5)

Standards & Data & Formulas

Circuits and Science

PCB Design


Computer Links

PCB Development

Technical Links for Engineers

Data Sheets - connector pinouts

Phase Locked Loops


Digital Electronics  (14)

Power Supplies & Circuits

Test Equipment (10)

DSP - Design - Tutorial

Radio Astronomy

Toroids I  

Electronics Links - Everything!!

Radio Astronomy Links

Toroids II - Calculating

Engineer on a Disk

Reference I - Engineering

Tutorials - Free Online


Reference II - General Electronics

Transistors / Diodes-LED's  (12)

Ferrite Cores - Testing Unknown

Resistors and Resistor  Circuits (4)

TTL Logic        (15)


Resonant Circuits

New! Eddy Currents (16)

Don't know where to start?  Then, start >HERE<

Navy Electronics Training Course - Complete
Free DOE Handbooks
How to navigate 101science.com



Amateur Radio Links

Advanced Technology


Satellite - Amateur Radio  


Field Day

Short Wave Radio Listening


Frequency Allocation Chart

Simplex - FM Voice Freqs.

ARRL Band Plans/Freq Charts 

Glossary/ Radio Terms

Software - Downloads

ARRL Newsletter Online



ARRL Organization

Internet (EchoLink, IRLP)

Station Arrangement

Auto Link Establishment (ALE)

Introduction to Ham Radio

Study Guide - Tests

Basic Electronics


TIME  Conversion

Beacons - NCDX/IARU

Online Internet Receivers

Traffic Handling

Books (Ham Radio book sale)

Operations - Ham Radio


Call-Sign Look-up (Fwd & Rev.)

Phonetic Alphabet (Eng.)

TVI and Noise



VLF (Very Low Frequency)

CW    (Morse Code)


WWW Amateur Radio Links

Digital (Digital TV, Packet, PSK31)

Radio Operations


DSP Repeaters    

GO TO ELECTRONICS PAGE 2  Electronics Engineering

  PageRank Tool